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Abstract—The Mars Exploration Rover Mission (MER) 
includes the twin rovers, Spirit and Opportunity, which 
have been performing geological research and surface 
exploration since early 2004. The rovers’ durability well 
beyond their original prime mission (90 sols or Martian 
days) has allowed them to be a valuable platform for 
scientific research for well over 2000 sols, but as a by-
product it has produced new challenges in providing 
efficient and cost-effective tactical operational planning. *** 

An early stage process adaptation was the move to 
distributed operations as mission scientists returned to their 
places of work in the summer of 2004, but they would still 
came together via teleconference and connected software to 
plan rover activities a few times a week. This distributed 
model has worked well since, but it requires the purchase, 
operation, and maintenance of a dedicated infrastructure at 
the Jet Propulsion Laboratory. This server infrastructure is 
costly to operate and the periodic nature of its usage 
(typically heavy usage for 8 hours every 2 days) has made 
moving to a cloud based tactical infrastructure an extremely 
tempting proposition. 

In this paper we will review both past and current 
implementations of the tactical planning application 
focusing on remote plan saving and discuss the unique 
challenges present with long-latency, distributed operations. 
We then detail the motivations behind our move to cloud 
based computing services and as well as our system design 
and implementation. We will discuss security and reliability 
concerns and how they were addressed. 
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1. INTRODUCTION 

Activity Planning for the Mars Exploration Rover Mission 
(hereafter MER) is a time consuming and intensely detail-
oriented process in which teams of scientists and engineers 
collaborate to develop the best plan for upcoming planning 
cycle. Due to the communications delay of up to 20 minutes 
between Earth and Mars, operations are planned out for a 
complete sol or even multiple sols in an iterative process. 
The planning team balances scientific priorities from 
various theme groups such as Atmospheric Science and 
Geology with underlying rover safety constraints such not 
exceeding limits on power usage and on-board memory 
consumption. The end result is an activity plan that contains 
the list of activities and parameters that the robot will be 
instructed to perform such as acquiring imagery, driving to 
selected goals, usage of individual instruments, as well as 
engineering tasks. 

Early MER mission planning was done using Jet Propulsion 
Laboratory’s The Science Activity Planner, the 2004 co-
winner of NASA Software of the Year. The Science 
Activity Planner (hereafter SAP) is used for both downlink 
data analysis and uplink activity planning  [1]. Data analysis 
is focus on image and mosaic browsing and annotation with 
mission targets. Activity planners used SAP onsite at JPL to 
develop and refine rover plans as a centralized team [2]. As 
the mission’s success continued, critical parties were eager 
to return to their respective home institutions and the 
development of a distributed solution was required. One 
trivially simple option that has been used on a limited basis 
is desktop sharing, which allows the user’s to leverage 
existing 3rd party software to connect to JPL machines over 
VPN and use the centralized software application without 
any modification. The downside of such a system is 
potentially poor performance for users based long distances 
away from Pasadena, CA be it stationed across the country 
in New York or even internationally. The high latency these 
users experience is unavoidable, and particularly not user-
friendly, so instead a client – server system, centered on 
Maestro for MER, was built to better support distributed 
operations. 

Maestro for MER is the thick client desktop application 
built as the successor to SAP.  Maestro for MER offers 
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improved downlink and uplink capabilities compared to 
SAP while having low hardware requirements such that 
users can run it on their laptops so long as they have an 
active network connection to JPL. Maestro for MER is built 
on the Eclipse Rich Client Platform that supports 
deployment on multiple platforms. Maestro’s initial 
capabilities included activity plan editing, image and mosaic 
searching and viewing, as well as targeting which allows the 
users to pick out points of interest. Over it’s lifetime 
Maestro’s downlink capabilities have been updated to 
include support for new features such as overhead mapping 
provided by the HiRISE camera on the Mars 
Reconnaissance Orbiter to aid in creating more accurate 
rover maps then previously possible [3]. Additionally the 
Activity Planning / uplink capabilities have been improved 
with support for follow along planning, but one area that 
was lagging behind was Plan Saving and Retrieval, 
particularly for remote users. In this paper we will focus on 
the various implementations we’ve utilized for the saving, 
searching, and loading of activity plans over the course of 
the mission. 

2. ACTIVITY PLANNING 

Plan Model—Activity Plans are the result of the planning 
process. Plans composed of top-level meta-data such as 
modification time, author, and plan name as well as the 
content of the plan which is a list of Activity Groups [4]. 
Activity Groups are named containers that have zero or 
more Activities. Activities correspond to the individual 
actions that the robot will be instructed to perform. Some 
types of activities are image captures, robot drives, and 
instrument power activation. These activities then have 
dozens of individual parameters, which specify the exact 
behavior. In addition to their parameters, the resource usage 
of each activity is also shown. The exact details of the 
structure’s hierarchy are not of particular importance, but 
the Object Oriented design context is critical to 
understanding the pros and cons detailed below in database 
storage example. 

1) Activity Plan 
a) Meta Data 
b) Activity Group 1 

i) Activity 1 
(1) Parameter 1 
(2) Parameter 2 

ii) Activity 2 
c) Activity Group 2 

 
Plans are created in a custom table editor that provides the 
user with an overview of the resources usage of individual 
components and the plan as a whole. The contents of the 
currently loaded activity dictionary are shown in a tree view 
and the user can drag and drop individual activity 
definitions from the dictionary into currently open plans. 

File Based Persistence—SAP was initially developed to run 
locally on JPL’s workstations in the confines of the Science 
Operators Working Group (SOWG) meeting room. Due to 
this configuration the most direct mechanism was file 
system based persistence. All machines were on the same 
network so they used NFS (Network File Systems) to save 
the plans to disk.  Plans were serialized to Rover Markup 
Language (RML), an XML based interchange format, using 
Castor. This system had high performance due to locality to 
the storage medium. Plans were stored in a well-defined 
structure based on meta-data such as what sol they were 
used on, but there was no additional integrated search 
capability. 

Hibernate Database Persistence—As previously mentioned 
the impetus for developing Maestro for MER was tied to the 
need to support distributed operations. A case study of 
potential solutions at the time led to the decision to store 
Activity Plans in a relational database and use Hibernate to 
perform the object-relational mapping. Using a relational 
database for persistence had additional benefits in that plans 
could be easily searched via SQL as well as precisely 
updated. Hibernate’s typical mapping of objects creates a 
database column for each primitive (Integers, String, 
floating point numbers, and Boolean) field in a class. Fields 
that are complex objects and don’t have a direct mapping to 
an existing SQL type are referenced using a one-to-one or 
many-to-one reference as appropriate using a lookup table. 
This schema design effectively means that each activity plan 
is stored, not in a single database tuple, but rather in 
hundreds of interconnected tuples since Activities, Activity 
Groups, Plans, and Parameters each are stored in separate 
tables. Saving a plan meant making serial connections to the 
database server and executing one SQL statement for each 
tuple. Activity Plan integrity was ensured using standard 
relational database concepts such as transactional reads and 
writes and foreign key constraints. 

A major improvement in moving from SAP to Maestro for 
MER was the addition of support for Plan Searching. As 
Maestro was being designed the MER mission was 
continuously generating new plans which made it harder to 
locate an individual plan from the past if the user didn’t 
know off-hand the specific details of when it was created 
and what stated it was last in, since those two criteria had 
determined the path of the file system 
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Figure 1: MER Plan Search Dialog 

Implementing Plan Searching was a natural fit with the 
move to relational database storage since we could write 
custom queries to target specific fields in the plan model 
and allow users to look for plans containing references to 
specific targets and use of particular instruments. 

One unique trait of MER planning is the iterative process of 
plan refinement and the accompanying roles and plan states. 
[4] Starting with a standard plan template the SOWG 
members go through various stages where they develop a 

skeleton of the day’s activity together, then separately and 
in parallel the various instrument leads will then fine tune 
Activity Groups relating to their instrument of concern. In 
this ‘Refinement’ stage the instrument leads will be 
restricted from structural modifications to the plan and can 
only modify the parameters of the activities in the groups 
that they own. When users have completed their individual 
refinement they then perform a partial plan save which 
updates only the database tuples for which they have write 
permission. This partial plan saving process fits naturally 
with the flattened database structure as we can precisely 
update the appropriate activity parameters and we don’t 
need to concern ourselves with conflicts from multiple 
temporally close plan saves since each user will be updating 

a mutually exclusive component of the plan. There is still 
the requirement on a separate capability for the users to 
receive notification of external changes and this is 
accomplished using JMS. 

The Hibernate based approach was an effective 
implementation and allowed for the newly added 
requirement of remote operations as well supporting the 
newly added functionality such as partial plan saves and 
plan search, but it had an unanticipated flaw. Once we 
moved to supporting remote users, we noticed the dramatic 
effect high latency connections had on Plan Saving and 
fetching. The serial nature of the tuple updates meant that if 
a user had a 25ms latency to JPL and their plan save 
touched 300 tuples the save would take almost 8 seconds to 
complete. If that was the worst case it likely would have 
been acceptable, but MER users were accustomed to 
creating template plans which contained several dozen 
activities and in excess of 1000 individual parameters and 
only exacerbated this performance bottleneck. The next step 
was to ameliorate this worst case. 

Hibernate Database over ReST Persistence—The 
previously mentioned worst-case performance problem 
became quickly evident as Maestro received wider adoption 
from the distributed science community. One of the benefits 
of our original design was that we had a smart client-dumb 
server approach so there was little overhead in terms of 
server maintenance. Our existing institutional Database SA 
could perform backups and restores as well as monitor the 
server’s uptime., but we needed a better option. Our next 
improvement was to turn to Representational State Transfer 
(hereafter ReST) and built a smart server. Since the high 
latency was the biggest bottleneck we designed a ReST 
server that sends and receives the plan as serialized binary 
blob over VPN. The server has now the single point of 
contact is the existing plan database and their location on 
the same network ensures low latency and significantly 
reduced save and load times. 

 

The Maestro client was updated to contact the ReST server 
via HTTP Put, Get, and Delete for creating, fetching and 
deleting plans. Functionally the capabilities remained the 
same, but with improved performance at the cost of 
additional maintenance overhead as a separate server 

Figure 3: Plan persistence using a ReSTlet 
intermediary 

Figure 2: Direct Database Persistence 
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needed to be built and deployed with each update. The 
ReST based architecture improved the user experience 
significantly for remote users, but recent technological 
developments have led to even higher performing options. 

3. CLOUD PERSISTENCE 

As mission operations have continued the size of the 
planning database has continued to increase. Additionally 
the operations process has been streamlined so that multi-
sol plans are now the norm. The combination of longer and 
therefore larger plans, plus data accumulation over time 
created more total data in the database, and evolving 
technology has led us to look at new options. The Maestro 
team has started optimizing the planning software 
responsible for the bottlenecks in the pipeline. Our solution 
involves novel use of cloud computing to optimize the 
process, which enables us to elastically expand and contract 
the resources available to our database on demand, while 
only paying for the compute capacity we utilize. Our 
solution decouples the meta-data about the plan from the 
actual plan data and stores them separately. The plans are 
stored as blobs in Simple Storage Service (S3), while the 
metadata is indexed in SimpleDB. With this design, plan 
searches resolve within tens of milliseconds, including 
network latency, while the largest plans can be retrieved 
within a matter of a few seconds.   

The unique solution effectively leverages cloud computing 
to deliver performance and scalability. For indexing the 
plans, we utilize SimpleDB, a database service provided by 
Amazon Web Services (AWS). SimpleDB is a document 
oriented database that provides a Restful interface to our 
data, while offering scalable searching mechanism. JPL 
only pays for the storage of our data and for exactly the 
cycles used by our queries. Furthermore, SimpleDB 
automatically scales up the capacity for our database 
whenever it faces heavy queries or saves. This enables us to 
provide a streamlined operations even in the busiest of 
times.  This database enables us to quickly search across 
thousands of plans without opening a single one to obtain 
all of their associated metadata. This is a great fit since plan 
searching and saving tend to be very temporally clustered 
and bursty operations centered around the planning cycle’s 
timeline. 

The plans are stored in S3. S3 is a scalable data store that is 
designed to handle heavy traffic. Furthermore, S3 replicates 
our files to ensure redundant copies are available in case of 
a storage failure. S3 also provides a Restful interface to all 
our files that enables us to write simple programs to 
download, upload, or delete files in the data store using 
standard HTTP methods PUT, POST, DELETE, GET and 
LIST. S3 provides very fast performance that enables us to 
download the largest plans within a matter of seconds.  

Our solution provides a cost effective mechanism to obtain 
revolutionary optimizations in the plan saving, retrieving, 
and searching features for MER. Our application marks 
MER as the first NASA mission to effectively leverage a 
commercial cloud for a production mission operations 
application. The approach offers drastic performance 
improvements over the previous design, built on MySQL, 
and offers enough scalability to allow MER to operate for 
tens of thousands of sols without any degradation in 
performance 

Ensuring Consistency— Partial Plan saving in Maestro is a 
vital part of the MER planning process. It allows scientists 
to concurrently commit partial saves of the plans, where 
their changes are localized to only a small portion of the full 
plan, this limited save is done during the Refinement stages 
and saves are typically scoped by instrument team. Since 
the plans are bigger than the size limit imposed by 
SimpleDB, we must store these plans in S3. However, 
decoupling the plans with their metadata makes it 
impossible for us to make conditional puts on the contents 
of the plan to ensure that a commit is fully merged and does 
not override changes made by a different scientist.  

The Planning Software group has devised a simple, yet 
elegant solution to solve this problem. Our solution stores a 
canonical copy of the blob in S3 before making a 
transaction in SimpleDB. Until the transaction succeeds, the 
blob is unreferenced, and it does not exist from the 
perspective of the application. The blob is named by the 
hash of its contents, and the database row contains the hash 
of the referenced blob.  

When committing a plan to the database, we start by 
obtaining the latest copy of the plan from S3 as referenced 
by SimpleDB.  In this process, we obtain the hash of the 
latest copy as well as the latest plan itself. We merge the 
local plan with the most up-to-date canonical copy as 
known by the database.  Subsequently, we generate a hash 
of the local merged copy, and we store the file in S3 and 
name it by its hash.  We then make a conditional PUT in the 
database for the same plan name, with the condition that the 
latest hash that the database knows about is the copy of the 
plan that we merged with. If the latest hash has changed, in 
the case of someone else committing simultaneously, we 
obtain the latest copy and retry our commit.  

Our solution is fault tolerant. Consider the case where the 
application crashes after committing a blob to S3. This 
crash will not corrupt the database as this blob is yet to be 
referenced by the database. On the other hand, consider the 
same scenario if we committed the transaction in the 
database first. If we crash after committing to the database 
and before inserting the blob into S3, our database is now 
corrupt and cannot reference this non-existent blob. 
Therefore, it is crucial to our algorithm to commit to S3 
prior to making the transaction with SimpleDB.  
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Our solution is fully transactional. Consider the scenario 
where during the commit, a different user succeeds in 
updating the plan while a slower client is still in the process 
of updating. Since our call to update the row contains a 
conditional PUT, the PUT will fail. This failure will cause 
our client to update the latest copy of the plan and merge 
with it before attempting to save again. Furthermore, in 
cases of failed transactions, our approach offers automatic 
rollbacks.   

Our solution is self-maintaining. Upon a successful 
transaction, we erase all existing copies of the blob that 
were referenced previously at any point. This approach 
minimizes the chances of orphaned blobs. Furthermore, 
successful transactions erase all previous copies, which 
clears the blob store of all unreferenced data. Lastly, we can 
run a daemon that cleans up all unreferenced blobs that are 
older than a day to safely erase all excess blobs.  

Performance-Cost Comparison—As we’ve moved to a 
cloud services based implementation we’ve seen a 
tremendous improvement in performance, particularly with 

larger plans. The following chart shows a comparison of 
save times for identical plans from the same remote 
machine on the same wireless network. Both axis are on a 
logarithmic scale. Both data series show a roughly linear 
growth in save times based on the number of activities and 
in turn activity parameters, and can be approximated with 
the following linear function TTotal  A * C TC, where A 
is the number of Activities, C is a constant factor and TC is 
the non-network dependent processing time. C is 
empirically observed to be significantly smaller with the 
Cloud based implementation and the reason for our 
improvement. 

In addition to much improved performance, cost was also a 
primary motivation to moving to a cloud services based 
architecture. Maestro’s use of JPL’s institutional services 

such as database administration and backup is summarized 
below. 

Resource Unit Cost Total 

2 ReST servers $670/month/machin
e 

$1340/month 

Data storage of 
2.5TB 

$335/month/TB + 
backup: 
$500/month/TB: 

$2000/month 

Total Yearly Cost: ~ $40K. 

Next we will provide a summary of our costs under the new 
architecture.   

Resource Unit Cost Total 

Storage – 
including backup 

$165/TB/month $412.50/month 

Load balancer $0.025 / hour $18/month 

1 Large machine 
running 24/7 

$191/month $191/month 

10 Large 
machines 21 
hrs/week 

$34/month/machine $340/month 

Bandwidth – 300 
GB outgoing 

$0.15/GB $45/month 

Small instance at 
JPL 

$70/month $70/month 

Total Yearly Cost: ~$13K 

In this calculation we have included the cost of a constantly 
running large machine as well as 10 machines that will be 
provisioned during image processing. This conservative 
estimate of the cloud-based cost we are saving $27K 
annually on infrastructure costs while providing better 
performance to our end users. 

4. RELATED AND FUTURE WORK 

Polyphony—Compared to plan persistence, image 
processing, particularly mosaic generation is an even more 
natural fit for moving to cloud based services. Mars 
missions such as MER, Phoenix, and soon MSL all produce 
large downlink products that are processed extensively to 
help the client better interact with them. This imagery is 

Figure 4: Comparison of Save Times – Both Axis are
Logarithmic 
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downlinked from the spacecraft on a daily basis and 
efficiently creating usable client products helps provide the 
science planning team with new data at a rapid pace. One 
type of processing is the tiling of high-resolution images 
including the aforementioned mosaics. [5] We use tiled 
images so clients can lazily load only the resolutions and 
area they are currently viewing which minimizes the 
download time to first view an image while allowing for 
seamless zooming in when desired. 

 

Figure 5: Polyphony Mosaic Tiles 

Polyphony has been designed to manage the creation of 
mosaic and image tiles in a parallel process across multiple 
machines. Polyphony works by dividing up the work queues 
and then provisioning multiple machines to work on 
separate processing tasks in a divide and conquer approach. 
These machines utilize shared storage and don’t have large 
memory requirements since they use the Kakadu JPEG2000 
library to only load the portion of the images that is needed 
for manipulation. 

Content Delivery Networks—One potential technology we 
will likely utilize going forward is cloud based content 
delivery networks. Since Maestro and its MSL counterpart 
MSLICE have globally distributed user bases it is important 
to provide speedy downloads to all corners of the Internet. 
CloudFront and similar technologies offer a simple interface 
for providing content to a broad user base. These content 
delivery networks provide low-latency edge nodes 
distributed in different locations so that instrument leads 
located abroad can quickly access the most popular plans 
and data products. We can heuristically determine which 
products and plans are of highest interest, at a first cut 
typically the most recent plans, and thus ensure that our 
users perceive minimal lag. 

5. CONCLUSION 

In this paper we summarize how the planning process has 
changed over time and why Cloud computing has proved to 
be an excellent fit for MER plan persistence. We have 
striven to balance implementation simplicity with our ever-
evolving performance requirements. Our first Hibernate 
based implementation was designed with simplicity in mind 
and worked reliably save plans for the long latency remote 
user. Minimizing the number of round trips with the 
addition of the ReST was a simple improvement, but only 
an intermediate stage. The cloud based plan persistence 
implementation is the first use of Cloud computing on a 
flight mission and early user feedback has been very 
favorable. As we move forward in developing the planning 
and sequencing software subsystems for future missions, 
including Mars Science Laboratory, we will leverage these 
lessons learned and develop a similar architecture to provide 
similar cost-savings and performance benefits. Vendor lock-
in is a viable concern with any application and while we 
haven’t built a system that is immune to it, the cost to 
migrate to another cloud provider, such as Google and their 
BigTable datastore would be relatively minor. Our current 
active user base benefits greatly from the high speed and 
efficiency of these cloud services. Additionally, as a 
development team moving to a commodity server setup has 
greatly simplified the software update process. 
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